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Causality Explains Why Spatial and Temporal
Translations Commute: A Remark

Vladik Kreinovich!
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Under reasonable assumptions, it is proven that if a space-time has symmetries
of translation type, then these symmetries form a commutative group.

Historically, the first physics-oriented nonplanar geometric models of
space-time (proposed by Einstein) were smooth manifolds. However, it turned
out that in the general case, physical space-times cannot be described by
smooth manifolds: first, due to the equations of general relativity, they have
singularities (Misner et al., 1973), and second, due to quantum effects,
space-times are locally nonsmooth. Therefore, a more general mathematical
description of space-time is needed. A natural idea is to use for describing
space-time a structure that is more physically fundamental than the structure
of a smooth manifold. The most fundamental structure related to space-time
is the structure of causality; therefore, Buseman (1967), Kronheimer and
Penrose (1967), and Pimenov (1970) suggested to describe a space-time as
an ordered set (M, <), with a = b meaning that an event a can causally
influence an event b. In Newtonian physics, if two events a and b are
simultaneous, they can influence each other; in other words, we have a = b
and b =< a and therefore < is not an order. Since Einstein, however, it is
believed that such instantaneous action is impossible. In view of that, we
will assume that =< is an order.

Definition 1. By a space-time, we mean an ordered set (M, <) that has
at least one pair (a, b). A 1-1 mapping g: M > M is called a symmetry if
it preserves causality, i.e., if for every a and b, a = b iff g(a) = g(b).
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Comments

» It is easy to see that symmetries form a group.

» Observers inside the space-time use numbers to describe the events.
A function x: M — R that assigns numbers to events will be called a coordinate.
Since we consider symmetric space-times (with symmetries generalizing
translations in space-time), it is reasonable to consider only inertial coordi-
nates, i.e., coordinates in which “translations” from the group G act as shifts
x - x + const. Of special interest are temporal coordinates t, i.e., coordinates
in which if a can causally influence b, then t(a) = 1(b).

In special relativity, not only is it true that every time when a < b, we
have t(a) =< 1(b) for all temporal coordinates ¢, but the inverse is also true:
the only reason why for some pairs of events a cannot influence & is that in
some inertial coordinates, the time of b precedes the time of a. It is reasonable
to make a similar assumption for our general case as well. Let us formulate
it in mathematical terms.

Definition 2. Let (M, =) be a space-time, and let G be a group of
symmetries of M.

* By a coordinate, we understand a function x: M — R.

* A coordinate x is called inertial if for every g € G there exists a
number s,(g) such that x(g(a)) = x(a) + sg) for all a.

e A coordinate x is called temporal if x(a) = x(b) whenever a <b.

* A pair (M, G) is called natural if the following condition holds:
For every a, b, if t(a) = t(b) for all inertial temporal coordinates ¢,
then a =< b.

Proposition. Let (M, =) be a space-time, and let G be a group of
symmetries of M. If (M, G) is a natural pair, then the group G is commutative
(i.e., g18, = g.8 forall g; € G).

Proof. 1. Let us first prove that for every inertial coordinate x and for

every g, 8 € G, we have s(g182) = 5.81) + $(82).
Indeed, for every x and for every a € M, we have

x(g1(g2(a)) = x(gx(a)) + sg1) = x(a) + s(g) + sdg)

On the other hand, x(g,(g:(a))) = x(g,82(a)) = 581 82) + x(a). Equating
the resulting two expressions for x( g,(g.(a))), we get the desired equality.
2. Let us finally prove that for every a, we have g,g, = g8
Indeed, for every a and for every temporal inertial coordinate ¢, we have
1 g g.(a)) = s(g) + s{g2) + t(a) and similarly have 1(g,g:(a)) = s/(g))
+ s(g2) + Ha). Hence, for every ¢, g ,8.a) = H{g.ga) and therefore,
1(g) g.a) = 1(g,£,a). Since the pair (M, G) is assumed to be natural, it follows



Why Spatial and Temporal Translations Commute 695

that g, g,(a) = g,g,(a). Similarly, g.g,(a) = g,g(a). Since =< is an order,
we conclude that g, gx(a) = gz g.(a) for all a, i.e., that g, g, = g,g;. QED

Comment. This simple proof was influenced by the results presented
(for topological groups) in Gladysz (1962, 1964) and Charin (1966, p. 139).
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